In “Network Modeling and Analysis in Python,” you will learn how different types of network analysis can be used to make sense of complex systems. You’ll learn how algorithms can be used to better understand disease epidemics, human community structure, and the flow of information on social media. This course combines network theory with empirical analysis of real-world networks using the Python library NetworkX. You’ll learn about community structure in networks as well as several popular algorithms for community detection and applications.

Vente anticipée ! Débloquez plus de 10 000 cours de Google, Microsoft et autres pour 160 €/an. Économisez maintenant.


Network Modeling and Analysis in Python
Ce cours fait partie de Spécialisation More Applied Data Science with Python

Instructeur : Daniel Romero
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand the fundamental principles underlying network structures and apply NetworkX to analyze these principles in real-world networks.
Describe the practical uses of the community detection problem and use algorithms to detect and evaluate community structure in real networks.
Explain the value and applications of network generation models, learn their limits and strengths, and employ them to create synthetic networks.
Identify several basic diffusion models and implement them to run simulations using real and synthetic networks.
Compétences que vous acquerrez
- Catégorie : Simulations
- Catégorie : Jupyter
- Catégorie : Network Analysis
- Catégorie : Analysis
- Catégorie : Graph Theory
- Catégorie : Algorithms
- Catégorie : Probability & Statistics
- Catégorie : Unsupervised Learning
- Catégorie : Network Model
Détails à connaître

Ajouter à votre profil LinkedIn
juin 2025
14 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
In this module, you will continue learning about the foundational concepts and structural properties that characterize connectivity in networks when considering node attributes. You will explore the principle of homophily or assortative mixing, which explains the tendency of nodes to connect with others that are similar to themselves, and reciprocity, which addresses the mutual linkage between nodes. The module will also cover the concept of structural holes, which highlights the advantages of nodes positioned between unconnected network clusters, and the k-core decomposition method, used to identify cohesive subgroups within the network.
Inclus
5 vidéos10 lectures3 devoirs1 devoir de programmation1 sujet de discussion1 laboratoire non noté
This module covers Community Structure in networks: the organization of nodes in a network into clusters or communities, where nodes within the same community have a higher density of connections within their community than across other communities. We explore algorithms to identify communities in networks and evaluate them. Key topics include Modularity, a measure that quantifies the strength of the division of a network into modules or communities; the Girvan-Newman algorithm, a method that systematically removes edges from the network to find the best division based on edge betweenness centrality; Agglomerative Hierarchical Clustering, a technique that builds a hierarchy of clusters by progressively merging groups based on their distance or similarity; and Label Propagation, an algorithm for detecting communities based on spreading labels throughout the network and forming communities based on the dominant label. We also discuss applications to the community detection problem in real-world scenarios.
Inclus
8 vidéos1 lecture4 devoirs1 devoir de programmation1 laboratoire non noté1 plugin
This module expands on network generative models, building on previously covered models such as Small-World and Preferential Attachment models. We'll explore the Erdős-Rényi model, which connects nodes randomly and serves as a baseline for understanding random graph theory. The module also covers the Stochastic Block Model, which is useful for modeling community structures by grouping nodes and connecting them based on group membership. Additionally, we explore the Configuration Model, which is used for creating random networks that maintain a given degree distribution.
Inclus
5 vidéos1 lecture3 devoirs1 devoir de programmation1 laboratoire non noté
This module explores how ideas, diseases, and information spread in networks using models like SI, SIS, SIR, Independent Cascade, and Linear Threshold. Learners will simulate these models with Python, modify them, and tackle the influence maximization problem, identifying key nodes to optimize information or behavior spread.
Inclus
13 vidéos3 lectures4 devoirs1 devoir de programmation1 laboratoire non noté
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
University of Michigan
University of Michigan
University of Michigan
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,